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Abstract. We consider a four-parameter family of point interactions in one dimension. This
family is a generalization of the usualδ-function potential. We examine a system consisting of
many particles of equal masses that are interacting pairwise through such a generalized point
interaction. We follow McGuire who obtained exact solutions for the system when the interaction
is theδ-function potential. We find exact bound states with the four-parameter family. For the
scattering problem, however, we have not been so successful. This is because, as we point out,
the condition of no diffraction that is crucial in McGuire’s method is not satisfied except when the
four-parameter family is essentially reduced to theδ-function potential.

1. Introduction

One of the exactly solvable many-body models in quantum mechanics is a system of particles
of equal masses in one dimension, interacting through aδ-function potential [1, 2]. Theδ-
function potential is a special case of a large family of point interactions in one dimension.
The family of point interactions represents all possible self-adjoint extensions of the kinetic
energy operator [3–7]. There are two types of point interactions, penetrable and impenetrable.
An impenetrable point interaction separates the space into two disjoint half-spaces. In this
paper we focus on the penetrable type which we think is more interesting in physics than the
impenetrable type. The point interactions of the penetrable type can be specified in terms of
four real parameters.

It has recently been pointed out that, for a one-body problem in which a particle interacts
with a given point interaction, three parameters are actually sufficient [8]. The fourth parameter,
denoted withθ in the following, is redundant. This is in the sense that, although the
wavefunction of the particle depends onθ , observable quantities like the transmission and
reflection probabilities, the energy eigenvalue and the probablity density of a bound state are
all independent ofθ . In many-body problems, however,θ may have subtle implications in
relation to the symmetry of the wavefunction.

The purpose of this paper is to examine the three-body and many-body problems in
one dimension when the particles involved have equal masses and are interacting through
one of the penetrable point interactions of the four-parameter family. We assume that the
interaction is common to all pairs. It is understood that the particles have no spin. We
treat the particles as distinguishable ones without imposing any symmetry requirements on
the many-body wavefunction. In certain situations the wavefunction becomes symmetric or
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antisymmetric with respect to interchanges of the particles. In such cases the wavefunction
can be interpreted as that for bosons or fermions.

This work is an extension of part of McGuire’s pioneering work in which the same problems
were exactly solved with theδ-function potential [1]. For the bound state we find that McGuire’s
solutions can easily be extended to accommodate the four-parameter family. The scattering
problem is much harder. We find that the condition of no diffraction that is crucial in McGuire’s
method for the scattering problem is satisfied only if the four parameters are restricted in a
certain manner. For the general four-parameter family of point interactions, the scattering
problem requires more sophisticated approach, which is beyond the scope of this paper†.

In section 2 we summarize relevant aspects of the one-body and two-body problems with
the point interactions. In section 3 we determine the three-body and many-body bound states.
Section 4 is devoted to the scattering states. Summary and discussion are given in section 5.
There are two appendices. In appendix A we discuss the symmetry aspect the many-body
wavefunction in relation to parameterθ . In appendix A we summarize the results for the
δ-function potential so that our results can easily be compared with those of McGuire.

2. Point interactions

Let us start with a one-body problem; a particle interacting with a given point interaction at
x = 0. A point interaction is such that it is zero everywhere except atx = 0. The point
interaction can be interpreted in terms of self-adjoint extension of the nonrelativistic kinetic
energy operator−(h̄2/2m) d2/dx2 wherem is the mass of the particle concerned. In the
following we use units in which ¯h = 1. Note that, as we stated in section 1, we do not consider
the impenetrable type of point interactions that disconnect the half-spaces ofx > 0 andx < 0.

It is known that there are four-parameter families of penetrable point interactions [3–7].
They can be expressed in terms of the boundary condition on the wavefunction atx = 0. The
boundary condition can be written as(

ψ ′(+0)
2mψ(+0)

)
= U

(
ψ ′(−0)

2mψ(−0)

)
(1)

U = eiθ

(
α β

δ γ

)
αγ − βδ = 1 (2)

whereψ ′(x) = dψ(x)/dx andα, β, γ, δ and θ are real dimensionless constants. Among
α, β, γ and δ, three are independent. Thus we have a four-parameter family of point
interactions.

It would be useful to relate the parameters specified above to another set of real parameters
a, b, c andd that have appeared in the literature [6,9,10]. In these references units are chosen
such that 2m = 1. In terms of these parametersU can be expressed as

U = eiθ

(
d c

b a

)
ad − bc = 1. (3)

The θ is common between (2) and (3). The other parameters are related bya = γ , b = δ,
c = β andd = α. In [6], ω = eiθ was actually used. In this paper we use the notation of (1)
and (2) throughout.

For a point interaction that is expressed as above, we can work out all physics problems
such as those of transmission, reflection and bound state. It turns out that, although the

† After submitting an earlier version of this paper for publication in this journal, one of the referees kindly brought a
preprint by Albeverioet al (ADF) [9] to our attention. ADF independently addressed essentially the same problems.
For the point interactions of the penetrable type, our scattering solutions agree with theirs. In the bound state problem,
however, our solutions are more general than theirs. We will comment on ADF’s work towards the end of this paper.
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wavefunction obviously depends onθ through the phase factor eiθ , all physically observable
quantities such as various probabilities, matrix elements, energy eigenvalues are independent
of θ . In this senseθ is a redundant parameter. Two point interactions that differ only through
the choice of the value ofθ are physically equivalent. If eiθ is complex, it may look as if
time-reversal invariance is violated. This is actually not the case [8]. For a one-body system, it
is therefore sufficient to take the three-parameter family withoutθ , that is, by keepingθ fixed
to an arbitrary value.

In the many-body case that we study in the following sections, all physical quantities
such as the energy eigenvalues and various matrix elements will be independent ofθ . In this
senseθ is again redundant. The wavefunction, however, depends on the choice ofθ . This
will have relevance regarding the symmetry, if any, of the wavefunction. If eiθ is complex, the
wavefunction does not seem to have any interesting symmetry. If eiθ = ±1 andα = γ , we
will see that the wavefunction exhibits simple symmetries. In the following we retainθ but
occasionally we focus on the cases of eiθ = ±1.

Suppose that the interaction is invariant under space reflectionx →−x. This means that
the boundary condition is invariant underψ(±0)→ ψ(∓0) andψ ′(±0)→ −ψ ′(∓0). This
holds if and only ifα = γ and eiθ = ±1. Let us mention two special cases. For the familiar
δ-function potentialV (x) = gδ(x) we obtain

α = −1 β = −g γ = −1 δ = 0 eiθ = −1. (4)

On the other hand, the so-calledδ′ interaction [3,4,6,7] is defined by the boundary condition
with

α = −1 β = 0 γ = −1 δ = −c eiθ = −1 (5)

where c is a constant. This implies that, whileψ ′(x) is continuous atx = 0, ψ(x) is
discontinuous. Theδ′ interaction so defined is invariant underx → −x (becauseα = γ

and eiθ is real). It was already emphasized in [7] that theδ′ interaction has little resemblance
to what the name may suggest (i.e. dδ(x)/dx).

In defining the above two special interactions we have chosenθ such that eiθ = −1. This
is to conform to the notation that was used earlier in [4, 5, 7]. If we opt for eiθ = 1, then
the signs of the other parameters are simply reversed. Actually, this latter choice seems more
convenient. To avoid any unnecessary confusion, however, we will adhere to (4) and (5). For
the choice of eiθ = 1, see appendix A also.

If the interaction is effectively attractive, there can be one or two bound states [6,7]. The
wavefunction of a bound state is of the form of

ψ±(x) = C±e−κ|x| (6)

whereκ > 0 and the suffix± refers to the sign ofx. The energy of the bound state is given by

E = − κ
2

2m
. (7)

The boundary condition (1) requires that

δκ2 + 2(α + γ )κm + 4βm2 = 0 (8)

which leads to

κ

2m
=


1

2δ

[
−(α + γ )±

√
(α − γ )2 + 4

]
if δ 6= 0

− β

α + γ
if δ = 0 and α + γ 6= 0.

(9)
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Figure 1. The regions in which there are 0, 1 or 2 real positive roots of (8) and hence 0, 1 and 2
bound states.

If equation (8) forκ has a positive real root, there is a bound state of energyE = −κ2/(2m).
For theδ-function potential of (4) withg < 0, we obtainκ = −gm. For theδ′ interaction of
(5) with c < 0, we findκ = −4m/c.

In general there can be two bound states. For example, ifδ 6= 0 andα = γ , (9) can be
reduced to

κ

2m
= −α ± 1

δ
. (10)

If δ > 0 andα < −1, there are two positive roots forκ. The + of the double sign corresponds
to the ground state. Ifδ > 0 andα = −1, this is aδ′ interaction of (5) withc < 0. In this
case there is only one bound state. Figure 1 shows the areas in theα–γ plane in which there
are zero, one and two bound states.

Theψ(x) andψ ′(x) are generally discontinuous atx = 0 [6,7]. We obtain the ratio

η ≡ ψ(+0)

ψ(−0)
= C+

C−
= −eiθ

(
α +

2βm

κ

)
= eiθ

(
γ +

δκ

2m

)
. (11)

It can be shown that|η| = |ψ(+0)/ψ(−0)| = 1 if and only ifα = γ .
Let us consider the case in which there are two bound states. It is understood thatδ 6= 0.

In this case the ratio of (11) can be reduced to

η = − 1
2eiθ

[
α − γ ∓

√
(α − γ )2 + 4

]
. (12)

If we distinguish theC± of the two bound states by adding superscripts(±) that correspond
to the± of (9) and (10) or the∓ of (12), we obtain

C∗(+)+ C(−)+ +C∗(+)− C
(−)
− = 0. (13)

By using this relation one can show that the wavefunctions of the two bound states are
orthogonal to each other.

Let us look into the special case ofα = γ andδ 6= 0. In this case we obtain

η = ±eiθ (14)
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where the double sign corresponds to those of (9) and (10). Suppose we chooseθ as eiθ = 1.
If there are two bound states, as we discussed below (10), the parity is even for the ground
state and odd for the excited state. If we chooseθ as eiθ = −1, the parity of each of the states
is reversed. We will discuss this aspect more in appendix A.

In addition to the bound state problem, the problem of transmission and reflection can
also be worked out [6,7]. We will quote the transmission and reflection coefficients in section
4 where we will examine the three-body scattering problem.

Before proceeding to the three-body and many-body systems that we examine in the next
section, it would be useful to briefly examine the two-body system. Let us introduce the
variablex defined by

x = 1√
2
(x1− x2). (15)

Thisx differs from the usual relative coordinate by a factor of
√

2. We use this because this is
one of the Jacobi coordinates that are commonly used in the three-body problem. In this way
we are treating the two-body system as a subsystem of a three-body system. The centre-of-
mass coordinate can be separated as usual and the Schrödinger equation for the system can be
reduced to [

− 1

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) (16)

whereV (x) stands for the point interaction that is defined by the boundary condition (1)
together with (2). The energyE does not contain the part that is due to the centre-of-mass
motion.

The interactionV (x) of (16) can be a source of confusion. Recall that the inter-particle
distance isx1 − x2 =

√
2x. To make the problem clear, let us consider the usualδ-function

potential. Suppose that we start with the two-body interactionV (x1 − x2) = g0δ(x1 − x2)

and change the variable tox, we obtainV (x1 − x2) = g0δ(
√

2x) = (g0/
√

2)δ(x). In
this interpretation, the interaction of (16) should beV (

√
2x) rather thanV (x). In this

connection, see appendix B. For a generalized interaction, the boundary condition of (1) has
to be appropriately scaled.

In this paper we take a different interpretation. Instead of starting withV (x1 − x2) and
scaling the interaction and the boundary condition as we described above, let us take theV (x)

of (16) as the one defined by (1) and (2) with the understanding thatx is the variable defined
by (15). After all, we take this as a matter of definition of the two-body interaction. The main
issue that we want to focus on is, with the two-body interaction so defined, how the three-body
problem can be solved. A great advantage of this definition ofV (x) of (16) is that all the
formulae that we have obtained for the one-body problem can be used for the two-body and
many-body problems with the understanding thatx is the one defined by (15). For a bound
state of the two-particle system, the wavefunction is given by (6) and its energy by (7), and so
on.

3. Three-body and many-body bound states

We consider a system of many particles of equal masses, interacting through a point interaction
that is represented by boundary condition (1). We begin with the three-body problem. Let the
coordinates of the three particles bex1, x2 andx3, and introduce the Jacobi coordinatesx, y
andz by

x = 1√
2
(x1− x2) y =

√
2

3

(x1 + x2

2
− x3

)
z = 1√

3
(x1 + x2 + x3). (17)
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Figure 2. Six regions 1, 2, . . . ,6 of the three-particle
configuration that are divided by three linesx12 = 0,
x23 = 0 andx31 = 0. In this connection, see (15) and
(16). The order of entries in(++−) etc refer to the
signs ofx12, x23 andx31, respectively.

Note that

−x −
√

3y

2
= 1√

2
(x2 − x3) − x +

√
3y

2
= 1√

2
(x3− x1). (18)

The Schr̈odinger equation for the three-body system reads[
− 1

2m

(
∂2

∂x2
+
∂2

∂y2

)
+ V (x) + V

(
−x −

√
3y

2

)
+ V

(
−x +

√
3y

2

)]
ψ(x, y)

= Eψ(x, y). (19)

It is understood that the coordinatez (that is essentially the centre-of-mass coordinate) has
been separated already. It is also understood that the two-body interactions likeV (x) are
interpreted as in section 2, below (14).

Let us consider six regions that are specified in terms of the signs ofx12, x23 and
x31, where xij = (xi − xj )/

√
2. We designate the regions with 1, 2, . . . ,6, or with

(++−), (−+−), . . . , (+−−); see figure 2. For example, in region 1,x12 > 0, x23 > 0 and
x31 < 0. Note that(+++) and(−−−) are not possible. Our six regions 1, 2, . . . ,6 correspond
to McGuire’s regions II, I, III, V, VI and IV, in this order.

Let us assume that the interaction is effectively attractive and there is a bound state. In
each of the six regions, the Schrödinger equation for the three-particle system is satisfied by

φ(x, y) = exp

[
−κ

(
|x| + |x +

√
3y|

2
+
|x −√3y|

2

)]
(20)

whereκ > 0 is a constant that is to be determined. Theφ(x, y) is totally symmetric with respect
to the interchange of any pair of particles 1, 2 and 3. Let us assume that the wavefunction of
the bound state in each of the regions is of the form of

ψν(x, y) = Cνφ(x, y) ν = 1, 2, . . . ,6. (21)

The energyE of the bound state is given by

E = −2κ2

m
. (22)

In order to satisfy the Schrödinger equation in the entire space, the wavefunction has
to satisfy the boundary conditions atx = 0, etc, where the point interactions act. This
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can be performed as follows. Let us start with region 1 by assuming the wavefunction
ψ1(x, y) = C1φ(x, y) and apply the boundary condition (1) to determine the wavefunction
in region 2. In doing so, we do not have to be concerned with they-dependence of the
wavefunction. In the vicinity of the linex = 0, the Schr̈odinger equation (19) can essentially
be reduced to the two-particle equation (16). Note that in going from region 1 to 2,x changes
from positive to negative. See, the signs ofx12 = (x1−x2)/

√
2,x23 andx31 shown in figure 2.

We thus obtain

C2 = C1

η
(23)

whereη is given by (11). Theκ that appears inη is that of (9), the sameκ as that of the
two-body case.

Next let us turn to the relation betweenC2 andC3. It is convenient to introduce another
set of Jacobi coordinatesx ′, y ′ andz′, which are respectively defined in terms ofx, y andz of
(17) in whichx1, x2 andx3 are replaced byx3, x1 andx2. Then the line that separates regions 2
and 3 is represented byx ′ = 0. We start in region 2 with the wavefunctionC2φ(x

′, y ′).
Recall thatφ(x, y) = φ(x ′, y ′), which is totally symmetric as we stated below (20). The
boundary condition alongx ′ = 0 leads to the wavefunctionC3φ(x

′, y ′) of region 3 where
C3 = ηC2 = C1. The reason why we obtain the factorη rather than 1/η as in (23) is that,
in going from region 2 to 3,x ′ changes from negative to positive. Repeating similar steps we
arrive at

C1 = C3 = C5 C2 = C4 = C6 = C1

η
. (24)

If there are two possible values ofκ, there are two bound states of the three-body system. For
the coefficientsCν of the two bound states, a relation of the form of (13) holds for any two
adjacent regions like 1 and 2. This leads to the orthogonality between the two states.

The κ and hence the energy of the bound state is independent ofθ . The probability
distribution|ψν(x, y)|2 is also independent ofθ . The wavefunction and the energy are both
smooth functions of the parameters of the interaction. Start with arbitrary values of the
parameters. Let them continuously vary and approach the values of (4), then we obtain
McGuire’s results for theδ-function potential. Let us assume that no level crossing takes
place in this limiting procedure. In the limit of theδ-function potential we know that there can
be only one bound state. It then follows that the bound state with the lower energy, that we
obtained above, is the ground state.

If α = γ and eiθ = 1, thenη = 1. The ground state is totally symmetric with respect
to interchanges of the particles. The excited state, if it exists as we discussed below (11), is
totally antisymmetric. Ifα = γ , and eiθ = −1, the symmetry and antisymmetry of the two
states are reversed.

Next let us consider theN -particle system. There areN ! linear configurations of theN
particles. Assume that the wavefunction is of the form of

ψν(x1, x2, . . . , xN) = Cν exp

(
− κ

∑
i>j

|xij |
)

xij = 1√
2
(xi − xj ) (25)

whereν refers to one of theN ! configurations andCν is a constant coefficient associated with
configurationν. It is understood that the centre-of-mass coordinate has been separated. Start
with the configuration (1, 2, 3, . . . , N), for example, and proceed to (2, 1, 3, . . . , N). Along
the boundary between these two configurations, theN -particle Schr̈odinger equation is again
reduced to the two-particle equation (16). Therefore the coefficientC2 can be related toC1

exactly in the same way as in (23), with theκ of (9). When we go from one configuration



4938 F A B Coutinho et al

to another, factorη or 1/η enters for every permutation. The configurations can be grouped
into those of even and odd permutations. TheCν are equal within each of the two groups.
TheCν of different groups differ by factorη. Starting with the initial configuration, another
configuration can be reached in different ways, but this does not give rise to any ambiguity in
determiningCν . For the nomalization of wavefunctions of the form of (25), see [11].

The energy of the bound state is given by

E = − κ2

12m
N(N2 − 1) (26)

whereκ is again that of (9). There can be two bound states. TheN -dependence ofE is the
same as that for theδ-function potential. For the derivation of theN -dependent factor, see the
appendix of McGuire’s paper [1].

4. Scattering states

McGuire showed how the scattering or the transmission and reflection problem for many-
particle systems can be solved exactly for theδ-function potential [1]. In this section let us
examine the three-particle case. If the three-particle case can be solved, many-body cases can
be done in a similar manner as shown by McGuire. The three-particle system can be regarded
as one particle in two dimensions, as can be seen from (19). A wave propagates in thex–y
plane and meets the interactions along the three linesx = 0, etc. For the solvability of the
problemà la McGuire, it is crucial that there is no diffraction. As McGuire showed, indeed
there is no diffraction when the interaction is theδ-function potential. For the general point
interactions, however, there is diffraction. This means that unfortunately McGuire’s method,
as such, does not work. This is what we show below.

We will not review McGuire’s calculation. Rather, we simply apply it to the present case.
Consider a ray (or a wave) incident in region 2 and transmitted and reflected by the potential
barriers. Let us focus on the ray that goes out into region 1. There are two geometries as
shown in figures 3 and 4.

Figure 3. Ray diagram that applies when the incoming
ray hits the potential linex = 0 i.e. x12 = 0 first. We
focus on the ray that is incident in region 2 and goes out
in region 1. For the regions, see figure 2.

Figure 4. Ray diagram that applies when the incoming
hits the potential line(x +

√
3y) = 0 i.e.x31 = 0 first.

We focus on the ray that is incident in region 2 and goes
out in region 1. For the regions, see figure 2.
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Assume that the amplitude of the incident wave is unity. In figure 3, the ray that goes
through points A, B and A′ obtains amplitudeT1−R2+R3+ and the other route of A, C and A′

leads toR1−R2−T3− . In figure 4, the amplitude of the outgoing ray isR3−T2+R1+. Here theT
andR are the transmission and reflection coefficients that have been worked out before [6,7];
we give them explicitly below. The suffices + and− indicate the direction of incidence, which
were respectively denoted with R and L before. Subscripts 1, 2 and 3 refer to the three angles
of incidence,

ϕ1 = ϕ ϕ2 = ϕ +
π

3
ϕ3 = −ϕ +

π

3
(27)

which were defined by McGuire [1]. TheTi± and Ri± are associated with the normal
components ofk,

ki = k sinϕi i = 1, 2, 3. (28)

Note that

k1 + k2 = k3. (29)

The path lengths of the rays in the two geometries are equal. If the two amplitudes
associated with the outgoing rays that are shown in figures 3 and 4, i.e.,

R1−R2−T3− + T1−R2−R3+ and R3−T2+R1+ (30)

are equal, there is no diffraction. Then the wavefunction of the scattering state can be written
down as was done by McGuire. This was indeed the case for theδ-function potential. In that
case the relation (29) is instrumental.

For the point interactions of the four-parameter family, theT andR read as [6,7],

T± = 4ie∓iθ km

D
(31)

R± = δk2 ∓ 2ikm(α − γ ) + 4βm2

D
(32)

D = δk2 + 2ikm(α + γ )− 4βm2. (33)

Note thatT+ 6= T− unless eiθ is real. TheR± are independent ofθ . Although somewhat tedious
it is straightforward to show that the condition for vanishing diffraction can be satisfied for
arbitraryk andϕ if and only if

α = γ δ = 0 eiθ = ±1. (34)

If we combine (34) with the constraintαγ − βδ = 1, we obtainα = γ = ±1. It is interesting
that ADF [7] arrived at exactly the same condition by examining the Yang–Baxter equation
for the system within the context of the Bethe ansatz [2,12].

If eiθ = −1, the interaction ofα = γ = −1 is the usualδ-function potential of (5) and we
obtain McGuire’s solution. The other interaction ofα = γ = 1, which ADF called the ‘anti-δ
interaction’, differs from theδ-function potential only through the different choice of eiθ . For
these two interactions, the wavefunctions of the three-body system only differ in the sign that
depends on the six regions; the scattering amplitudes of (30) differ only through their overall
sign. For the physical quantities of the system, the two interactions end up with identical
results. In this sense they are essentially equivalent. See, however, appendix A.
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5. Summary and discussion

We have attempted to extend McGuire’s work [1] on the many-particle system interacting
through the δ-function potential to accommodate the four-parameter family of point
interactions. We have succeeded in doing so for the bound states, but not quite for the scattering
states. For the bound states we obtained exact solutions. If the interaction supports one or
two bound states for the two-body system, it supports the same number of bound states for an
N -body system. It is interesting that, unlike McGuire’s case, there can be two bound states
(for the same system with the same interaction). We suspect that what we have found exhausts
all possible bound states, but we have no rigorous proof for that.

In general, the scattering problem becomes complicated because of the emergence of
diffraction. McGuire’s method, as such, does not work unless the parameters are restricted to
(34). There is no such restriction in the bound state problem. The condition of no diffraction
is instrumental for the scattering problem but it is not for the bound state. We admit that
we were surprised by this finding. The emergence of diffraction does not necessarily mean
the nonexistence of scattering solutions. We believe that scattering solutions exist even in
the presence of diffraction. The solutions would require a more sophisticated approach, one
probably similar to that developed by Albeverioet al [13]. In the cases that were examined
in [13] diffraction occurs because the particles have different masses, or the interactions for
different pairs are different, and so on. Still scattering solutions can be constructed.

ADF [7] independently examined essentially the same problem as us except that they also
considered the impenetrable type of point interactions that we have not considered. Let us
comment only on their results on the penetrable type. For the scattering problem, ADF’s results
and ours agree. For the bound state problem, ADF obtained solutions only for the parameter
sets for which they found scattering solutions. As we emphasized already, the bound solutions
that we found have no such restrictions. ADF’s solutions are special cases of our solutions.
As we said above there can be two bound states. ADF’s solutions have no such possibility.
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Appendix A. Symmetry of the bound state wavefunctions

In this appendix we assume eiθ = ±1. Let us consider the bound states of the one-particle
system that we discussed in section 2, in particular, the case ofα = γ andδ > 0. Sinceα = γ ,
the system is invariant under space reflection, and parity is a good quantum number. Assume
α < 1 so that there are two bound states.

As we pointed out in section 2, if eiθ = 1 the parity is even for the ground state and is
odd for the excited state. On the other hand, if eiθ = −1 the parity is odd for the ground state
and is even for the excited state. This may sound odd but there is nothing wrong with this in
principle.

Let us consider anN -body system with the same interactions assumed above. If there are
two bound states in the two-body case, there are also two bound states in theN -body case. If
eiθ = 1, the ground state is totally symmetric and the excited state totally antisymmetric. If
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eiθ = −1, the symmetry and antisymmetry of the two states are reversed. A totally symmetric
(antisymmetric) state can accommodate bosons (fermions). There is ‘duality’ between the
boson systems. All physically observable quantities are the same between the two systems.

Let us add that, with eiθ = 1, the wavefunction of a bound state for an attractiveδ′

interaction is of the same form as that of an attractiveδ-function potential. This may seem to
imply a kind of duality. Theδ′ andδ interactions, however, give different transmission and
reflection coefficients. In this sense this duality is restricted to bound states.

Appendix B. The δ-function potential

In order to facilitate comparison between our results and those of McGuire [1], let us summarize
the case in which we start with the two-particle interaction

V (xi − xj ) = g0δ(xi − xj ). (35)

McGuire callsg0 (which he denotes withC) the true strength of theδ-function interaction.
Then, as we said below (16), theV (x) of (16) is given by

V (x) = gδ(x) g = g0√
2
. (36)

If g < 0, there is one bound state in each of the two-particle and many-particle systems with

κ = −gm = −g0m√
2
. (37)

The energy of theN -particle bound state is

E = −g
2m

12
N(N2 − 1) = −g0

2m

24
N(N2 − 1). (38)

If we putm = 1 andg0 = C = −gMG/
√

2, wheregMG is McGuire’sg, theE of (38)
becomes the same as McGuire’sE (p 634 of [1]). There is a misprint in McGuire’s three-body
wavefunction (p 630 of [1]). If we putm = 1

2 andg0 = −gCD, wheregCD is theg of [11],
(38) is reduced to (9) of [11].
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