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Abstract. We consider a four-parameter family of point interactions in one dimension. This
family is a generalization of the usuéifunction potential. We examine a system consisting of
many particles of equal masses that are interacting pairwise through such a generalized point
interaction. We follow McGuire who obtained exact solutions for the system when the interaction

is the s-function potential. We find exact bound states with the four-parameter family. For the
scattering problem, however, we have not been so successful. This is because, as we point out,
the condition of no diffraction that is crucial in McGuire’s method is not satisfied except when the
four-parameter family is essentially reduced to dHenction potential.

1. Introduction

One of the exactly solvable many-body models in quantum mechanics is a system of particles
of equal masses in one dimension, interacting througHumction potential [1, 2]. The-
function potential is a special case of a large family of point interactions in one dimension.
The family of point interactions represents all possible self-adjoint extensions of the kinetic
energy operator [3—7]. There are two types of point interactions, penetrable and impenetrable.
An impenetrable point interaction separates the space into two disjoint half-spaces. In this
paper we focus on the penetrable type which we think is more interesting in physics than the
impenetrable type. The point interactions of the penetrable type can be specified in terms of
four real parameters.

It has recently been pointed out that, for a one-body problem in which a particle interacts
with a given pointinteraction, three parameters are actually sufficient[8]. The fourth parameter,
denoted withé in the following, is redundant. This is in the sense that, although the
wavefunction of the particle depends 6nobservable quantities like the transmission and
reflection probabilities, the energy eigenvalue and the probablity density of a bound state are
all independent ofl. In many-body problems, howevet,may have subtle implications in
relation to the symmetry of the wavefunction.

The purpose of this paper is to examine the three-body and many-body problems in
one dimension when the particles involved have equal masses and are interacting through
one of the penetrable point interactions of the four-parameter family. We assume that the
interaction is common to all pairs. It is understood that the particles have no spin. We
treat the particles as distinguishable ones without imposing any symmetry requirements on
the many-body wavefunction. In certain situations the wavefunction becomes symmetric or

0305-4470/99/264931+12$30.00 © 1999 IOP Publishing Ltd 4931



4932 F A B Coutinho et al

antisymmetric with respect to interchanges of the particles. In such cases the wavefunction
can be interpreted as that for bosons or fermions.

Thisworkis an extension of part of McGuire’s pioneering work in which the same problems
were exactly solved with thiefunction potential [1]. Forthe bound state we find that McGuire’s
solutions can easily be extended to accommodate the four-parameter family. The scattering
problem is much harder. We find that the condition of no diffraction that is crucial in McGuire’s
method for the scattering problem is satisfied only if the four parameters are restricted in a
certain manner. For the general four-parameter family of point interactions, the scattering
problem requires more sophisticated approach, which is beyond the scope of this papert.

In section 2 we summarize relevant aspects of the one-body and two-body problems with
the point interactions. In section 3 we determine the three-body and many-body bound states.
Section 4 is devoted to the scattering states. Summary and discussion are given in section 5.
There are two appendices. In appendix A we discuss the symmetry aspect the many-body
wavefunction in relation to parametér In appendix A we summarize the results for the
8-function potential so that our results can easily be compared with those of McGuire.

2. Point interactions

Let us start with a one-body problem; a particle interacting with a given point interaction at
x = 0. A point interaction is such that it is zero everywhere except at 0. The point
interaction can be interpreted in terms of self-adjoint extension of the nonrelativistic kinetic
energy operator-(72/2m) d?/dx? wherem is the mass of the particle concerned. In the
following we use units in which = 1. Note that, as we stated in section 1, we do not consider
the impenetrable type of point interactions that disconnect the half-spaces 6fandx < 0.

It is known that there are four-parameter families of penetrable point interactions [3—7].
They can be expressed in terms of the boundary condition on the wavefunctiea @t The
boundary condition can be written as

V0 \ [ v(=0)
(me(+0>> =v (2:m//<—0)> @)
U:em(g 5) ay — =1 (2

wherev/’(x) = dy(x)/dx anda, 8, v, 8 andé are real dimensionless constants. Among
a, B,y and§, three are independent. Thus we have a four-parameter family of point
interactions.

It would be useful to relate the parameters specified above to another set of real parameters
a, b, c andd that have appeared in the literature [6, 9, 10]. In these references units are chosen
such that & = 1. In terms of these parametdyscan be expressed as

U:eie(i Z) ad —bc =1 3)

The 6 is common between (2) and (3). The other parameters are related=by, b = §,
c =B andd = «. In [6], » = €’ was actually used. In this paper we use the notation of (1)
and (2) throughout.

For a point interaction that is expressed as above, we can work out all physics problems
such as those of transmission, reflection and bound state. It turns out that, although the

T After submitting an earlier version of this paper for publication in this journal, one of the referees kindly brought a
preprint by Albevericet al (ADF) [9] to our attention. ADF independently addressed essentially the same problems.
For the point interactions of the penetrable type, our scattering solutions agree with theirs. In the bound state problem,
however, our solutions are more general than theirs. We will comment on ADF'’s work towards the end of this paper.
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wavefunction obviously depends érthrough the phase factof eall physically observable
guantities such as various probabilities, matrix elements, energy eigenvalues are independent
of 6. In this sens@ is a redundant parameter. Two point interactions that differ only through
the choice of the value af are physically equivalent. Ifieis complex, it may look as if
time-reversal invariance is violated. This is actually not the case [8]. For a one-body system, it
is therefore sulfficient to take the three-parameter family withothat is, by keeping fixed

to an arbitrary value.

In the many-body case that we study in the following sections, all physical quantities
such as the energy eigenvalues and various matrix elements will be independein dfis
sensd is again redundant. The wavefunction, however, depends on the chaiceTdfis
will have relevance regarding the symmetry, if any, of the wavefunctiorl! iseomplex, the
wavefunction does not seem to have any interesting symmetry, #et1 anda = y, we
will see that the wavefunction exhibits simple symmetries. In the following we rétaint
occasionally we focus on the cases Bfe +1.

Suppose that the interaction is invariant under space reflection—x. This means that
the boundary condition is invariant und¢x+0) — ¥ (F0) andy’'(£0) — —y'(F0). This
holds if and only if« = y and & = +1. Let us mention two special cases. For the familiar
s-function potentialV (x) = gé(x) we obtain

a=-1 B=—g y=-1 §=0 df = -1 4)

On the other hand, the so-call&dnteraction [3, 4,6, 7] is defined by the boundary condition
with

a=-1 p=0 y=-1 §=—c éf=-1 (5)

wherec is a constant. This implies that, whik’(x) is continuous att = 0, ¥ (x) is
discontinuous. Thé’ interaction so defined is invariant under— —x (becausex = y
and ¢ is real). It was already emphasized in [7] that shinteraction has little resemblance
to what the name may suggest (i.6(d)/dx).

In defining the above two special interactions we have chéserch that 8 = —1. This
is to conform to the notation that was used earlier in [4,5, 7]. If we opt fo=e 1, then
the signs of the other parameters are simply reversed. Actually, this latter choice seems more
convenient. To avoid any unnecessary confusion, however, we will adhere to (4) and (5). For
the choice of & = 1, see appendix A also.

If the interaction is effectively attractive, there can be one or two bound states [6, 7]. The
wavefunction of a bound state is of the form of

Yi(x) = Cpe M (6)
wherex > 0 and the suffixt refers to the sign aof. The energy of the bound state is given by

K2

E = o @)
The boundary condition (1) requires that
Sk%+2(a + y)km + 48m? =0 (8)
which leads to
- 2_15[_<a+y>im] it 520 o
om B

2m - if §=0 and a+y #£0.
aty
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Figure 1. The regions in which there are 0, 1 or 2 real positive roots of (8) and hence 0, 1 and 2
bound states.

If equation (8) forc has a positive real root, there is a bound state of enBrgy —«?/(2m).
For thes-function potential of (4) withg < 0, we obtairk = —gm. For thes” interaction of
(5) with ¢ < 0, we finde = —4m/c.
In general there can be two bound states. For exampdes4f0 anda = y, (9) can be
reduced to
K —atl
om = 5 (20)
If § > 0andae < —1, there are two positive roots fer The + of the double sign corresponds
to the ground state. if > 0 anda = —1, this is a¥’ interaction of (5) withc < 0. In this
case there is only one bound state. Figure 1 shows the areasdryth@ane in which there
are zero, one and two bound states.
The v (x) andy’(x) are generally discontinuousat= 0 [6, 7]. We obtain the ratio

_ Y0 G (o 2BmYN (O 8k
n:w(—O)_C__ e (a+ p )_e' <y+2m). (12)
It can be shown thdy| = |y (+0) /¥ (—0)| = 1 ifand only ifa = y.

Let us consider the case in which there are two bound states. It is understodg4iGat
In this case the ratio of (11) can be reduced to

=1 e -y F@—p7+d]. (12)
If we distinguish theC. of the two bound states by adding superscrigt$ that correspond
to the+ of (9) and (10) or ther of (12), we obtain

OO+ =o. (13)

By using this relation one can show that the wavefunctions of the two bound states are
orthogonal to each other.
Let us look into the special case®f= y ands§ # 0. In this case we obtain

n = +e’ (14)
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where the double sign corresponds to those of (9) and (10). Suppose we érasode= 1.

If there are two bound states, as we discussed below (10), the parity is even for the ground
state and odd for the excited state. If we chapss ¢ = —1, the parity of each of the states

is reversed. We will discuss this aspect more in appendix A.

In addition to the bound state problem, the problem of transmission and reflection can
also be worked out [6, 7]. We will quote the transmission and reflection coefficients in section
4 where we will examine the three-body scattering problem.

Before proceeding to the three-body and many-body systems that we examine in the next
section, it would be useful to briefly examine the two-body system. Let us introduce the
variablex defined by

1 15
x = ﬁ(xl Xx2). (15)
This x differs from the usual relative coordinate by a factok@. We use this because this is
one of the Jacobi coordinates that are commonly used in the three-body problem. In this way
we are treating the two-body system as a subsystem of a three-body system. The centre-of-
mass coordinate can be separated as usual and thad8aer equation for the system can be
reduced to
L& +V =E 16
[—%@ (x)}//(x) = Ey(x) (16)
where V (x) stands for the point interaction that is defined by the boundary condition (1)
together with (2). The energf does not contain the part that is due to the centre-of-mass
motion.

The interactionV (x) of (16) can be a source of confusion. Recall that the inter-particle
distance isx; — xo = +/2x. To make the problem clear, let us consider the ugtfahction
potential. Suppose that we start with the two-body interactigm — x2) = god(x1 — x2)
and change the variable tg we obtainV(x; — xp) = 208(v/2x) = (go/~/2)8(x). In
this interpretation, the interaction of (16) should b&v/2x) rather thanV (x). In this
connection, see appendix B. For a generalized interaction, the boundary condition of (1) has
to be appropriately scaled.

In this paper we take a different interpretation. Instead of starting With — x») and
scaling the interaction and the boundary condition as we described above, let us téke)the
of (16) as the one defined by (1) and (2) with the understandingcttsathe variable defined
by (15). After all, we take this as a matter of definition of the two-body interaction. The main
issue that we want to focus on is, with the two-body interaction so defined, how the three-body
problem can be solved. A great advantage of this definitiolr @f) of (16) is that all the
formulae that we have obtained for the one-body problem can be used for the two-body and
many-body problems with the understanding thas the one defined by (15). For a bound
state of the two-particle system, the wavefunction is given by (6) and its energy by (7), and so
on.

3. Three-body and many-body bound states

We consider a system of many particles of equal masses, interacting through a point interaction
that is represented by boundary condition (1). We begin with the three-body problem. Let the
coordinates of the three particles bg x, andxs, and introduce the Jacobi coordinatesy

andz by

1 2 /x1+x 1
x = —(x1 — x2) y= —<l Z—Xs) 7= —=(x1+x2+x3). (17)

V2 3\ 2 V3
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+y

Figure 2. Sixregions 12, .. ., 6 of the three-particle
configuration that are divided by three lines = 0O,
x23 = 0 andxz; = 0. In this connection, see (15) and
(16). The order of entries ift++—) etc refer to the

-y signs ofx12, x23 andxss, respectively.
Note that
X — \/:_Sy x + \/Z_Sy 1
5 ﬁ(xz X3) 5 ﬁ(xs X1) (18)

The Schédinger equation for the three-body system reads

2 2 _ +
[—% (% + aa_yZ) +VEx)+V (——x fy> +V (—x fyﬂ v(x,y)
= Ey(x,y). (19)
It is understood that the coordinatgthat is essentially the centre-of-mass coordinate) has
been separated already. It is also understood that the two-body interactions(likere
interpreted as in section 2, below (14).
Let us consider six regions that are specified in terms of the signg.ofx,3 and
x31, Wherex;; = (x — xj)/«/i. We designate the regions with2 ...,6, or with

(++-), (—+—), ..., (+——); see figure 2. For example, in regioni, > 0, xp3 > 0 and
x31 < 0. Note that{+++) and(———) are not possible. Our six regionsZ. . .., 6 correspond
to McGuire’s regions 11, I, 1ll, V, VI and 1V, in this order.

Let us assume that the interaction is effectively attractive and there is a bound state. In
each of the six regions, the Sdidinger equation for the three-particle system is satisfied by

$x.y) = exp[—x (le o +;f3y' L —zﬁyl)]

wherex > Oisaconstantthatisto be determined. glte, y) is totally symmetric with respect
to the interchange of any pair of particles 1, 2 and 3. Let us assume that the wavefunction of
the bound state in each of the regions is of the form of

(20)

Yo (x,y) = C,o(x,y) v=12...,6. (22)
The energyE of the bound state is given by
2K2
E=——. (22)
m

In order to satisfy the Schdinger equation in the entire space, the wavefunction has
to satisfy the boundary conditions at= 0, etc, where the point interactions act. This



Many-body system with a four-parameter family 4937

can be performed as follows. Let us start with region 1 by assuming the wavefunction
Y(x, y) = C1¢(x, y) and apply the boundary condition (1) to determine the wavefunction
in region 2. In doing so, we do not have to be concerned withytldependence of the
wavefunction. In the vicinity of the line = 0, the Schddinger equation (19) can essentially
be reduced to the two-particle equation (16). Note that in going from region Ixtotfanges
from positive to negative. See, the signscef = (x1 — x2)/+/2, x23 andxs; shown in figure 2.
We thus obtain

C1

n
wheren is given by (11). Thec that appears im is that of (9), the same as that of the
two-body case.

Next let us turn to the relation betweéh andCs. It is convenient to introduce another

set of Jacobi coordinates, y’ andz’, which are respectively defined in termsxofy andz of
(17) in whichxy, x» andxz are replaced bys, x; andx,. Then the line that separates regions 2
and 3 is represented by = 0. We start in region 2 with the wavefunctiafpe (x’, y').
Recall thaty (x, y) = ¢ (x/, y’), which is totally symmetric as we stated below (20). The
boundary condition along’ = 0 leads to the wavefunctio@z¢ (x’, y') of region 3 where
C3 = nC, = C3. The reason why we obtain the factprather than 1n as in (23) is that,
in going from region 2 to 3y’ changes from negative to positive. Repeating similar steps we
arrive at

C, (23)

C1=C3=0Cs C2=C4=CG=%. (24)
If there are two possible values of there are two bound states of the three-body system. For
the coefficient, of the two bound states, a relation of the form of (13) holds for any two
adjacent regions like 1 and 2. This leads to the orthogonality between the two states.

The « and hence the energy of the bound state is independeht dthe probability
distribution|v, (x, y)|? is also independent &. The wavefunction and the energy are both
smooth functions of the parameters of the interaction. Start with arbitrary values of the
parameters. Let them continuously vary and approach the values of (4), then we obtain
McGuire’s results for thé-function potential. Let us assume that no level crossing takes
place in this limiting procedure. In the limit of tléefunction potential we know that there can
be only one bound state. It then follows that the bound state with the lower energy, that we
obtained above, is the ground state.

If « =y and & = 1, theny = 1. The ground state is totally symmetric with respect
to interchanges of the particles. The excited state, if it exists as we discussed below (11), is
totally antisymmetric. lix = y, and & = —1, the symmetry and antisymmetry of the two
states are reversed.

Next let us consider th&/-particle system. There aré! linear configurations of thev
particles. Assume that the wavefunction is of the form of

Vu(x, x2, ..., xn) = C,y exp< kY. |xi_j|> Xij = i(xi —x;) (25)
i>]j ﬁ

wherev refers to one of the&v! configurations and’, is a constant coefficient associated with

configuratiorw. It is understood that the centre-of-mass coordinate has been separated. Start

with the configuration (12, 3, ..., N), for example, and proceed to,® 3, ..., N). Along

the boundary between these two configurations Mhgarticle Schodinger equation is again

reduced to the two-particle equation (16). Therefore the coefficiertan be related t@’;

exactly in the same way as in (23), with theof (9). When we go from one configuration
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to another, facton or 1/n enters for every permutation. The configurations can be grouped
into those of even and odd permutations. Theare equal within each of the two groups.
The C, of different groups differ by factos. Starting with the initial configuration, another
configuration can be reached in different ways, but this does not give rise to any ambiguity in
determiningC,.. For the nomalization of wavefunctions of the form of (25), see [11].

The energy of the bound state is given by

E—_ X NP1 (26)
=" 1om ( )

wherek is again that of (9). There can be two bound states. Nka#ependence of is the
same as that for thiefunction potential. For the derivation of thé-dependent factor, see the
appendix of McGuire’s paper [1].

4. Scattering states

McGuire showed how the scattering or the transmission and reflection problem for many-
particle systems can be solved exactly for &heinction potential [1]. In this section let us
examine the three-particle case. If the three-particle case can be solved, many-body cases can
be done in a similar manner as shown by McGuire. The three-particle system can be regarded
as one particle in two dimensions, as can be seen from (19). A wave propagates-y the
plane and meets the interactions along the three knesO0, etc. For the solvability of the
problema la McGuire, it is crucial that there is no diffraction. As McGuire showed, indeed
there is no diffraction when the interaction is #unction potential. For the general point
interactions, however, there is diffraction. This means that unfortunately McGuire’s method,
as such, does not work. This is what we show below.

We will not review McGuire’s calculation. Rather, we simply apply it to the present case.
Consider a ray (or a wave) incident in region 2 and transmitted and reflected by the potential
barriers. Let us focus on the ray that goes out into region 1. There are two geometries as
shown in figures 3 and 4.

out out

7\

Figure 3. Ray diagram that applies when the incomingFigure 4. Ray diagram that applies when the incoming
ray hits the potential line = 0 i.e.x12 = O first. We hits the potential lingx + V3y) = 0i.e.x3 = O first.
focus on the ray that is incident in region 2 and goes outVe focus on the ray that is incident in region 2 and goes
in region 1. For the regions, see figure 2. out in region 1. For the regions, see figure 2.
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Assume that the amplitude of the incident wave is unity. In figure 3, the ray that goes
through points A, B and Aobtains amplituddy_ R,.R3. and the other route of A, C and A
leads toR;_R,_T3_ . Infigure 4, the amplitude of the outgoing rayRs_T».R1+. Here thel'
andR are the transmission and reflection coefficients that have been worked out before [6, 7];
we give them explicitly below. The suffices + anpdndicate the direction of incidence, which
were respectively denoted with R and L before. Subscripts 1, 2 and 3 refer to the three angles
of incidence,

T T
p1=¢ 2=¢* 2 pa=—¢+3 (27)

which were defined by McGuire [1]. Th&. and R;+ are associated with the normal
components of,

ki = ksing; i=1223. (28)
Note that
ki +ky = ks. (29)

The path lengths of the rays in the two geometries are equal. If the two amplitudes
associated with the outgoing rays that are shown in figures 3 and 4, i.e.,

Ri_R, T3 +T)_Ry_Rs3. and R3_ T R1+ (30)

are equal, there is no diffraction. Then the wavefunction of the scattering state can be written
down as was done by McGuire. This was indeed the case fdr-tinection potential. In that
case the relation (29) is instrumental.

For the point interactions of the four-parameter family, Thand R read as [6, 7],

4ie ' km
Ty=—F— (31)
8k? F 2i —y) +4Bm?
R, = k= Ikm(O; y) +4pm (32)
D = 8k? + 2ikm(a + y) — 4Bm>. (33)

Note thatT. # 7_ unless & isreal. TheR.. are independent &f. Although somewhat tedious
it is straightforward to show that the condition for vanishing diffraction can be satisfied for
arbitraryk andg if and only if

a=y §=0 d’ = +1. (34)

If we combine (34) with the constrainty — 8§ = 1, we obtaine = y = £1. Itis interesting
that ADF [7] arrived at exactly the same condition by examining the Yang—Baxter equation
for the system within the context of the Bethe ansatz [2, 12].

If ' = —1, the interaction o = y = —1 is the usuas-function potential of (5) and we
obtain McGuire’s solution. The other interactionoot= y = 1, which ADF called the ‘antb-
interaction’, differs from theé-function potential only through the different choice &f.eFor
these two interactions, the wavefunctions of the three-body system only differ in the sign that
depends on the six regions; the scattering amplitudes of (30) differ only through their overall
sign. For the physical quantities of the system, the two interactions end up with identical
results. In this sense they are essentially equivalent. See, however, appendix A.
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5. Summary and discussion

We have attempted to extend McGuire’s work [1] on the many-particle system interacting
through the §-function potential to accommodate the four-parameter family of point
interactions. We have succeeded in doing so for the bound states, but not quite for the scattering
states. For the bound states we obtained exact solutions. If the interaction supports one or
two bound states for the two-body system, it supports the same number of bound states for an
N-body system. It is interesting that, unlike McGuire’s case, there can be two bound states
(for the same system with the same interaction). We suspect that what we have found exhausts
all possible bound states, but we have no rigorous proof for that.

In general, the scattering problem becomes complicated because of the emergence of
diffraction. McGuire’s method, as such, does not work unless the parameters are restricted to
(34). There is no such restriction in the bound state problem. The condition of no diffraction
is instrumental for the scattering problem but it is not for the bound state. We admit that
we were surprised by this finding. The emergence of diffraction does not necessarily mean
the nonexistence of scattering solutions. We believe that scattering solutions exist even in
the presence of diffraction. The solutions would require a more sophisticated approach, one
probably similar to that developed by Albevegbal [13]. In the cases that were examined
in [13] diffraction occurs because the particles have different masses, or the interactions for
different pairs are different, and so on. Still scattering solutions can be constructed.

ADF [7] independently examined essentially the same problem as us except that they also
considered the impenetrable type of point interactions that we have not considered. Let us
comment only on their results on the penetrable type. For the scattering problem, ADF’s results
and ours agree. For the bound state problem, ADF obtained solutions only for the parameter
sets for which they found scattering solutions. As we emphasized already, the bound solutions
that we found have no such restrictions. ADF’s solutions are special cases of our solutions.
As we said above there can be two bound states. ADF’s solutions have no such possibility.
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Appendix A. Symmetry of the bound state wavefunctions

In this appendix we assumé& e= +1. Let us consider the bound states of the one-particle
system that we discussed in section 2, in particular, the case-0f ands > 0. Sincex = y,

the system is invariant under space reflection, and parity is a good quantum number. Assume
a < 1 so that there are two bound states.

As we pointed out in section 2, if%e= 1 the parity is even for the ground state and is
odd for the excited state. On the other hand’if-e —1 the parity is odd for the ground state
and is even for the excited state. This may sound odd but there is nothing wrong with this in
principle.

Let us consider atv-body system with the same interactions assumed above. If there are
two bound states in the two-body case, there are also two bound states\rotbdy case. If
€’ = 1, the ground state is totally symmetric and the excited state totally antisymmetric. If
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€’ = —1, the symmetry and antisymmetry of the two states are reversed. A totally symmetric
(antisymmetric) state can accommodate bosons (fermions). There is ‘duality’ between the
boson systems. All physically observable quantities are the same between the two systems.

Let us add that, with'é = 1, the wavefunction of a bound state for an attractive
interaction is of the same form as that of an attracifanction potential. This may seem to
imply a kind of duality. Thes’ ands interactions, however, give different transmission and
reflection coefficients. In this sense this duality is restricted to bound states.

Appendix B. The §-function potential
In order to facilitate comparison between our results and those of McGuire [1], let us summarize
the case in which we start with the two-particle interaction

V(xi —x;) = god(x; — x;). (35)

McGuire callsgo (which he denotes witl€") the true strength of th&-function interaction.
Then, as we said below (16), th&x) of (16) is given by

80
V(ix) = géx = =—. 36
(x) = gd(x) §$=/3 (36)
If ¢ < 0, there is one bound state in each of the two-particle and many-particle systems with
gom
K=—gm=—"—". 37
g /3 (37)
The energy of thev-particle bound state is
2 2
— 8Ny = 89" N2 —
E = o N(N?—1) 7 N(N? = 1). (38)

If we putm = 1 andgo = C = —guc/v/2, Wheregyg is McGuire’sg, the E of (38)
becomes the same as McGuir&'§p 634 of [1]). There is a misprint in McGuire’s three-body
wavefunction (p 630 of [1]). If we putz = % andgo = —gcp, Wheregcp is theg of [11],
(38) is reduced to (9) of [11].
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